Selected FIPS type sparse primes
with Atkin-Morain solution points

for fast prime order Elliptic Curves,

searching to a maximum h(D) of 256.

[go to site home page]

LEGEND
(a) TF[n] - a reference number (I call these the Top FIPS set).
(b) Numbers following (a) are FIPS prime exponents
   Hence   TF[1]    61,  -0     (immediately below) represents (Mersenne prime)   261 - 2 =  261 - 1
(c) The pairs following are    {abs(Discriminant),  h(D)}  which yield prime order elliptic curves.
   All discriminants are negative, the sign being implied.
   Discriminants are in C-format hexadecimal.

TF[1]        61,     -0.
{0x2B, 1}         {0x3BB, 4}        {0x4CB, 4}        {0x2E3, 5}
{0x44B, 6}        {0x1933, 17}      {0x14D3, 20}      {0x8893, 21}
{0xA70B, 28}      {0xD0AB, 35}      {0xD85B, 36}      {0x64B3, 56}
{0x33223, 56}     {0x43DCB, 66}     {0x29C6B, 68}     {0x1F5BB, 72}
{0x94FB, 74}      {0x29D03, 90}     {0xCABB, 95}      {0x5AD23, 102}
{0x86CFB, 102}    {0x79263, 112}    {0xBE24B, 112}    {0x90DDB, 124}
{0x9AE5B, 128}    {0x1C80BB, 128}   {0x395E3, 129}    {0x22E3BB, 135}
{0x3C39B, 141}    {0x99753, 144}    {0x2A7EEB, 144}   {0x45623, 164}
{0x132C5B, 164}   {0x2AFFB, 165}    {0xC64C3, 168}    {0xB245B, 170}
{0xC5B13, 195}    {0x242C83, 218}   {0x5B9D3, 223}    {0x1AB5C3, 240}
{0x203CEB, 240}   {0x750943, 245}   {0x6CEC3B, 247}   {0x35D73B, 248}
{0x248BDB, 256}

TF[2]      89,     -0.
{0x10B, 2}        {0x1F3, 3}        {0x2DBB, 12}      {0x4873, 14}
{0x12F73, 22}     {0x11BB3, 36}     {0x8C03, 46}      {0x2D17B, 54}
{0xD9FB, 56}      {0xBC2F3, 96}     {0xEFC43, 100}    {0x5D4C3, 104}
{0x89323, 108}    {0xF2E33, 163}    {0xC9AFB, 164}    {0x22B83B, 164}
{0x1E0823, 167}   {0x173B93, 171}   {0x73283, 181}    {0x20180B, 203}
{0x940F3, 222}    {0x1C0FDB, 224}   {0x27A76B, 226}   {0x3F419B, 228}
{0xE4D9B, 240}    {0x410D43, 240}   {0x2D1683, 248}   {0x561523, 252}
{0x2DB42B, 256}

TF[3]     107,     -0.
{0xCAB, 8}        {0x1A6B, 9}       {0x41CB, 15}      {0x7893, 22}
{0x1BB3B, 49}     {0x38A1B, 76}     {0xB1A33, 94}     {0x50283, 100}
{0xDB53B, 100}    {0xC392B, 108}    {0x1311D3, 111}   {0x119D13, 119}
{0x714AB, 120}    {0x4017B, 124}    {0xED673, 141}    {0x13AEF3, 155}
{0x1AB64B, 168}   {0x24E8DB, 175}   {0xB6703, 178}    {0x32DD83, 190}
{0xD7D9B, 192}    {0x42B713, 236}   {0x25F123, 247}

TF[4]     127,     -0.
{0x133, 3}        {0xDB3, 8}        {0x340B, 16}      {0x39AB, 16}
{0x33BB, 20}      {0xBB1B, 38}      {0x1817B, 40}     {0x169C3, 50}
{0x1EFE3, 80}     {0x13BCB, 82}     {0x11483, 88}     {0x28FE3, 88}
{0x1E57B, 98}     {0x5519B, 99}     {0xC4723, 112}    {0xF0313, 150}
{0x95983, 176}    {0x1C9AEB, 192}   {0x45F93, 208}    {0x39FF33, 216}
{0x378163, 217}   {0x17F3E3, 220}   {0x246BB3, 220}   {0x184F7B, 222}
{0x234DC3, 233}

TF[5]     157,    +32,     -0.
{0x3B923, 51}     {0x5A20B, 68}     {0x2F21B, 91}     {0x16163B, 100}
{0x9143B, 113}    {0x15785B, 154}   {0x270793, 171}   {0x402583, 198}
{0x233383, 222}   {0x70EE6B, 224}   {0x1E3523, 227}   {0x23F803, 248}

TF[6]     191,    -64,     +0.
{0x14C0B, 36}     {0x1577B, 55}     {0x4562B, 90}     {0x13CA6B, 123}
{0x22430B, 144}   {0x7BDC3, 148}    {0xB81CB, 161}    {0x2BDF0B, 168}
{0x34A6B3, 198}   {0x45962B, 213}

TF[7]     191,    +96,    +32,     +0.
{0x18C5B, 29}     {0xA5D3, 53}      {0x3092B, 60}     {0x2378B, 70}
{0x7CF33, 72}     {0x2477B, 123}    {0x9029B, 164}    {0x2092C3, 214}

TF[8]     192,    -64,     -0.
{0xEB, 2}         {0x287B, 14}      {0x59383, 58}     {0x2CF6B, 68}
{0x7451B, 74}     {0x8768B, 74}     {0x86533, 120}    {0xB210B, 144}
{0x1DC8F3, 150}   {0xF8E63, 166}    {0x15EBDB, 182}   {0x2B3BEB, 200}
{0x1689EB, 212}   {0x1D6653, 245}

TF[9]     222,    +96,    +64,     +0.
{0x1ECB, 17}      {0x5FCB, 18}      {0x1B3E3B, 110}   {0x71623, 119}
{0xA8523, 146}    {0x5B74B, 169}    {0x51E1B, 170}    {0x6402B, 184}
{0x31133, 225}    {0x49973B, 226}   {0x3CE44B, 228}   {0x182C13, 244}

TF[10]    224,    -96,     +0.
{0x23, 2}         {0x513, 8}        {0x17E3, 10}      {0x1E74B, 52}
{0x9E21B, 62}     {0x4FAA3, 72}     {0x206D3, 90}     {0x2AD2B, 93}
{0x15F853, 111}   {0x9D00B, 112}    {0x6F5A3, 160}    {0x142E33, 174}
{0x1A1463, 208}   {0xBB0EB, 213}    {0x3AF76B, 252}

TF[11]    254,    -96,     -0.
{0x258BB, 52}     {0x5237B, 54}     {0x56E1B, 69}     {0x15C44B, 146}
{0x4145CB, 208}   {0x1F04FB, 224}

TF[12]    254,    -64,     +0.
{0x4AFB, 16}      {0xF7AB, 28}      {0x52B3, 48}      {0x14DC3, 52}
{0x2285B, 53}     {0x21B9B, 55}     {0x21C4B, 60}     {0x2924B, 61}
{0x25AFB, 62}     {0x1FA63, 104}    {0x6D993, 130}    {0x558B3, 134}
{0x23C7B, 156}    {0x1FC723, 160}   {0xF2BAB, 174}    {0x2D66D3, 175}
{0x79100B, 254}

TF[13]    254,    +64,    +32,     +0.
{0x7BD3, 37}      {0x1ACEB, 44}     {0x1448B, 48}     {0x144DB, 56}
{0x796C3, 58}     {0x5C623, 78}     {0x6EA43, 100}    {0x197DA3, 125}
{0x4AB43, 144}    {0xFF5BB, 144}    {0x11389B, 144}   {0x21EF9B, 144}
{0x1D78B3, 168}   {0x19B9F3, 184}   {0x88D63, 232}    {0x3429C3, 240}
{0x39A8BB, 240}

TF[14]    255,    +96,     -0.
{0x9CE53, 98}     {0x5F0FB, 108}    {0xB2BA3, 112}    {0x81F13, 128}
{0x111AF3, 183}   {0x163453, 192}   {0x7AA3A3, 230}

TF[15]    256,    +96,     -0.
{0x1283B, 32}     {0x2E3DB, 42}     {0x439B3, 84}     {0x84163, 91}
{0x10C94B, 106}   {0x10523B, 142}   {0xFA2BB, 160}    {0x32E4B3, 180}
{0x11CAEB, 196}   {0x157FF3, 196}   {0x4B1F1B, 230}   {0x2F8933, 240}
{0x1ABF93, 245}

TF[16]    288,   +128,    -96,     +0.
{0xDC3, 6}        {0x1FC3, 12}      {0x1031B, 44}     {0x25F4B, 48}
{0x4F873, 55}     {0x48D7B, 64}     {0x22723, 80}     {0x226F93, 152}
{0x2054E3, 160}   {0x45968B, 256}

TF[17]    318,   -160,     -0.
{0x8E8BB, 72}     {0x13DAD3, 90}    {0x2049BB, 145}   {0x553A9B, 240}
{0x2CDB9B, 242}   {0x15182B, 252}

TF[18]    319,   +128,    -64,     -0.
{0x10AB, 8}       {0xA0E3, 52}      {0x22A7B, 80}     {0x209BC3, 250}

TF[19]    349,   -160,   +128,     -0.
{0x30B3B, 41}     {0x1DA33, 84}     {0xADA13, 99}     {0x4A5B2B, 180}
{0x190A6B, 194}

TF[20]    349,   -128,    -96,     -0.
{0x27B23, 64}     {0x1C543, 84}     {0x16073B, 136}   {0x197E63, 144}
{0xA31FB, 148}    {0x2FA343, 162}   {0x5696FB, 212}   {0x4533BB, 229}
{0x3A3D53, 242}

TF[21]    350,    -64,    -32,     -0.
{0x1E23, 18}      {0x79F3, 33}      {0xC413, 72}      {0x5FE63, 79}
{0x1D23B, 80}     {0x29308B, 192}   {0xC73D3, 220}    {0x224263, 222}

TF[22]    381,   -192,    -32,     -0.
{0x30B3B, 41}     {0x7400B, 85}     {0x88153, 112}    {0x8B8BB, 119}
{0x10A3B3, 135}   {0xBFD73, 145}    {0x19E95B, 213}

TF[23]    382,    +64,     -0.
{0x6C43, 28}      {0xC86B, 29}      {0x127BB, 45}     {0x17953, 48}
{0x6AD5B, 124}    {0xD9ED3, 129}    {0xD69B3, 132}    {0x1ADDC3, 160}
{0x10ACE3, 216}   {0x22FB73, 240}

TF[24]    382,   +192,   +160,     +0.
{0x105B, 14}      {0x41BB, 24}      {0x15F43, 27}     {0x27C7DB, 184}
{0x14C4E3, 249}

TF[25]    382,   +160,    +96,     +0.
{0x118E3, 48}     {0x1F90E3, 192}   {0xD679B, 196}    {0x14C683, 212}
{0x54F373, 234}   {0x2DA723, 245}

TF[26]    383,   +160,    +96,     +0.
{0x103, 4}        {0x12BB, 12}      {0xA2D3, 26}      {0x55AB, 36}
{0x37B5B, 46}     {0xA00F3, 96}     {0x17F3FB, 159}

TF[27]    415,   +192,   +128,     +0.
{0x182B, 12}      {0x2EAB, 20}      {0x14CB3, 40}     {0xB143, 48}
{0x110CB3, 112}   {0x3BDEFB, 238}   {0x3680B3, 250}

TF[28]    445,   -224,   -192,     +0.
{0xEE3, 10}       {0x1FC3, 12}      {0x10A83, 39}     {0x54DF3, 76}
{0x62E63, 81}     {0x13C64B, 125}   {0xB62D3, 216}

TF[29]    445,   -224,    -96,     -0.
{0x31033, 60}     {0xAAF83, 130}    {0x13886B, 167}   {0x892C3, 170}
{0xE312B, 184}    {0x3B831B, 192}   {0x323D5B, 195}

TF[30]    448,   -224,     -0.
{0x43B73, 53}     {0x4AFFB, 72}     {0x8CDBB, 80}     {0x452CB, 96}
{0x5C6E3, 128}    {0xF3883, 148}    {0x62CFB, 176}

TF[31]    448,   +192,   -160,     +0.
{0x2FB, 4}        {0x2D9E3B, 168}   {0x3B0FCB, 231}   {0x4AFCFB, 248}

TF[32]    448,   -160,    -32,     -0.
{0x4463B, 54}     {0x285BB, 62}     {0x86EC3, 84}     {0x28C93, 92}
{0x1B63B, 106}    {0x1B1AB, 112}    {0xA62DB, 120}    {0x1D4ADB, 220}
{0x833DB, 242}    {0x405C33, 256}

TF[33]    448,    +64,    +32,     +0.
{0xCF93, 40}      {0xA113, 48}      {0x289B3, 72}     {0x44E83, 96}
{0x24ABD3, 136}   {0x6D5AB, 184}    {0x1510FB, 192}   {0x874BB, 201}
{0x102963, 206}   {0x6B4C3, 224}    {0x2F2033, 244}

TF[34]    477,   -160,    -32,     -0.
{0x1EEB, 14}      {0xC5263, 111}    {0x159B3B, 168}

TF[35]    480,   +256,   -160,     +0.
{0x944B, 25}      {0x14CB3, 40}     {0x48B3B, 88}     {0x317CB, 104}
{0x74233, 116}    {0x1E50CB, 148}   {0x1DDAAB, 198}   {0x3B9EAB, 212}

TF[36]    480,    +96,    +32,     -0.
{0x2443, 11}      {0xEEC3, 56}      {0x1D3FB, 74}     {0x15463, 78}
{0x11A3BB, 154}   {0xE86F3, 162}

TF[37]     509,   -160,     +0.
{0x11E3, 10}      {0x10B13, 45}     {0x16DFE3, 108}   {0x1051DB, 150}
{0x4964B3, 200}   {0x4E878B, 200}

TF[38]     511,   -224,     +0.
   No solutions with h(D)<=256.

TF[39]     511,   -224,   -128,     +0.
{0x363EB, 54}     {0xB6023, 94}     {0xEFD73, 140}    {0x14C9BB, 156}
{0x1E6273, 212}   {0x2EC3AB, 224}

TF[40]     512,    +96,     -0.
{0x33A3, 31}      {0x3D55B, 54}     {0x147F3, 64}     {0x1949B, 66}
{0x161293, 82}    {0x48CDB, 106}    {0x56F63, 164}    {0x189F1B, 240}

TF[41]     512,    -32,     +0.
{0x53CE3, 57}     {0x4F303, 76}     {0x7700B, 84}     {0x4355B, 92}
{0x1AD493, 168}   {0x13B5EB, 252}

TF[42]     512,    -32,     -0.
{0x1723, 7}       {0xC61AB, 130}    {0xF59B3, 141}    {0x64790B, 243}

TF[43]     512,   +224,    +64,     +0.
{0x23, 2}         {0xBCB, 7}        {0x2B93, 12}      {0x25EB, 26}
{0x45693, 92}     {0x4B343, 96}     {0x5173B, 100}    {0x4E29B, 104}
{0xF4A0B, 116}    {0x243CAB, 200}   {0x34E6A3, 256}

TF[44]     521,     -0.
{0x6E53, 24}      {0x24B2DB, 216}   {0x3C818B, 232}

TF[45]     541,   +224,    -64,     -0.
{0x267B, 45}      {0x36913, 57}     {0xB081B, 147}    {0x31283, 152}
{0x1875BB, 204}   {0x2066FB, 236}

TF[46]    541,   -160,    -96,     -0.
{0x1BFA3, 56}     {0x1FA83, 62}     {0xEF75B, 111}    {0x10DAD3, 128}
{0x20ABE3, 140}

TF[47]    542,   +256,    +32,     +0.
{0x7C233, 72}     {0x14FB3, 74}     {0x5B6DB, 168}    {0x1C1F3B, 195}
{0x26A1F3, 210}   {0x3AB98B, 232}   {0x2423CB, 244}

TF[48]    543,   +224,    +32,     +0.
{0xA3, 1}         {0x297A3, 79}     {0x9EEF3, 80}     {0x13E6A3, 115}
{0x10AEC3, 140}

TF[49]    544,    -96,     +0.
{0x3903, 24}      {0x30716B, 200}   {0x2C654B, 208}   {0x10C503, 216}
{0x5C74B, 230}    {0x48884B, 252}

TF[50]    544,    -32,     +0.
{0x171DB, 48}     {0x3173B, 68}     {0x49A3B, 79}     {0x28C9C3, 254}

TF[51]    574,   -256,   -128,     -0.
{0x6DF3, 18}      {0xA93B, 32}      {0x2126B, 39}     {0x10A23, 42}
{0x5A633, 96}     {0x5FD2B, 108}    {0xB5D83, 128}    {0x433A3, 142}
{0xF422B, 155}    {0x171E0B, 216}   {0x2BF4B3, 232}   {0x239E63, 243}
{0x3B1DC3, 247}   {0x29D0BB, 252}

TF[52]    575,   -256,   +160,     -0.
{0x28F3, 10}      {0x4EFEB, 60}     {0x875CB, 74}     {0x3904B, 114}
{0x140C6B, 205}   {0x295C23, 220}   {0x50CD2B, 236}

TF[53]    575,   +224,   -160,     -0.
{0x201CB, 164}    {0x4CCCCB, 240}

TF[54]    575,   +192,   +128,     +0.
{0x4F8433, 208}

TF[55]    575,   +192,    -96,     -0.
{0x38FBB, 74}     {0xA6ABB, 138}    {0x6B06B3, 248}

TF[56]    575,   +128,    -32,     -0.
{0x7DCB, 25}      {0x117BB, 36}     {0x5B3B3, 84}     {0x68CE3, 97}
{0x168E13, 168}

TF[57]    607,     -0.
{0x16D53, 47}     {0x6380B, 88}     {0xF10D3, 222}

TF[58]    607,   +288,    +64,     +0.
{0x5F00B, 100}    {0x4D323, 112}    {0x9A79B, 144}    {0x27EE33, 207}
{0x3C092B, 225}

TF[59]    608,   -320,    +96,     +0.
{0x5E93, 32}      {0x7FC3, 33}      {0x768D3, 75}     {0xCE533, 100}

TF[60]    608,   +256,    +96,     -0.
{0xA3, 1}         {0x8135B, 88}     {0x229A9B, 188}

TF[61]    608,    +96,    -64,     +0.
{0x1C9C3, 36}

TF[62]    637,   +320,    -64,     -0.
{0x94CB, 40}      {0x8E8BB, 72}     {0x2A5B33, 199}

TF[63]    637,   -288,   -192,     -0.
{0x16B73, 44}     {0x640AB, 144}    {0x16E41B, 174}

TF[64]    637,   +224,    -32,     -0.
{0x223, 3}        {0xB31F3, 136}    {0x532A6B, 240}   {0x5E0C1B, 249}

TF[65]    637,   -128,    -64,     -0.
{0xEE3, 10}       {0x9E6B, 20}      {0x41FB, 28}      {0x184AB, 52}
{0x26B6F3, 140}   {0x160A0B, 162}   {0x16A8DB, 251}

TF[66]    638,   +320,    +96,     +0.
{0xB52DB, 84}     {0x4A503, 98}     {0x1AC03B, 104}   {0x6D3483, 220}
{0x3989B3, 238}   {0x2FF09B, 256}

TF[67]    638,    -64,    -32,     -0.
{0x4153, 16}      {0x13FCB, 36}     {0x7451B, 74}     {0x123583, 130}
{0x20BC7B, 168}   {0x2F6833, 183}   {0x364B13, 204}   {0x185863, 212}
{0x3543A3, 220}   {0x1B371B, 228}   {0x131A03, 232}   {0x183E3B, 252}

TF[68]    639,   +288,     -0.
   No solutions with h(D)<=256.

TF[69]    640,   +320,    -32,     +0.
{0x144ECB, 192}

TF[70]    670,   -224,    -64,     -0.
{0xD453, 36}      {0xE09B, 44}      {0xD75CB, 120}    {0x23DCEB, 192}

TF[71]    671,   -288,    +64,     -0.
{0x15C63, 48}     {0x2B803, 98}     {0x114273, 176}

TF[72]    671,   +256,    -96,     -0.
{0x38763, 72}     {0x8B1FB, 135}

TF[73]    671,   -192,   +160,     -0.
{0x6A22B, 108}    {0x3969B, 138}    {0xEC7DB, 192}    {0x493A6B, 210}

TF[74]    672,   -192,     +0.
{0x101B, 8}       {0x6C13, 42}      {0x2A85B, 104}    {0x208E8B, 176}
{0x4B35B3, 256}

TF[75]    672,   +320,   +128,     +0.
{0xC4DB, 24}      {0x20C9B, 60}

TF[76]    672,   +160,    +96,     -0.
{0x10453, 35}     {0x18E27B, 125}   {0x6B537B, 255}

TF[77]    701,   -352,    +96,     -0.
{0x39B, 10}       {0x2F0B, 13}      {0xB9F6B, 90}     {0x888A3, 94}
{0x132663, 242}

TF[78]    701,   -320,   +128,     -0.
{0x5403, 36}      {0x36673, 64}     {0x54493, 76}     {0x5852B, 76}
{0x308F3, 187}    {0x173083, 200}   {0x243BA3, 208}   {0xE99F3, 224}

TF[79]    701,   -288,   +256,     -0.
{0x86E3, 50}      {0x5E443, 96}     {0x51763, 99}     {0x139483, 156}
{0x20333B, 213}

TF[80]    701,   -288,   -192,     -0.
{0x4E13, 16}      {0x19B5B, 40}     {0xE780B, 160}    {0x40724B, 201}
{0x34325B, 251}

TF[81]    702,   -352,   -128,     -0.
{0x392B03, 243}   {0xD49A3, 252}

TF[82]    703,   +288,     -0.
   No solutions with h(D)<=256.

TF[83]    703,   +352,   +224,     +0.
{0x16153, 52}     {0x398B3, 97}

TF[84]    703,   +320,   -256,     -0.
{0x127FAB, 195}   {0x6DE0B, 200}

TF[85]    703,   +256,    +96,     +0.
{0x46663, 56}     {0x885D3, 96}     {0x594D3, 107}    {0x3D2E0B, 251}

TF[86]    703,   -224,    +32,     -0.
{0x10B, 2}        {0x241AB, 42}     {0x2D3EB, 59}     {0xF23CB, 100}
{0x2C81B, 116}    {0x3FD23, 156}

TF[87]    703,   -128,    -32,     +0.
{0x10D2B, 40}     {0xA01FB, 78}     {0x1833A3, 124}   {0x449983, 215}

TF[88]    704,   +256,   -224,     +0.
{0x65B, 7}        {0x3C62B, 79}     {0x3D3423, 235}

TF[89]    704,   -224,    -96,     -0.
{0x7163, 53}      {0x16243B, 236}

TF[90]    733,   -256,    -64,     -0.
{0xEBC3, 28}      {0x20983, 64}     {0x313F3, 94}     {0x113C53, 112}
{0xC539B, 144}    {0x173F3B, 176}   {0x1D0CCB, 196}

TF[91]    734,   +352,     -0.
{0x1E73, 16}      {0x61693, 80}     {0xF7DCB, 132}    {0xC4233, 196}
{0x12E343, 236}   {0x19E943, 248}

TF[92]    736,   -256,   +224,     +0.
{0x435D3, 65}     {0xEDD33, 110}

TF[93]    765,   -384,   -160,     +0.
{0x57FA3, 84}     {0xD44F3, 212}    {0x52AC3B, 216}   {0x255763, 224}

TF[94]    765,   -224,    -96,     -0.
{0xFFD4B, 101}

TF[95]    766,   -320,   -256,     -0.
{0x301B, 20}      {0x277F3, 63}     {0x3C4E3, 132}    {0x199B73, 204}

TF[96]    766,   +256,   +192,     +0.
{0x29773, 43}     {0x7F28B, 72}     {0x1FA33, 123}

TF[97]    767,   -192,     +0.
{0x11983, 30}     {0x233CB, 72}     {0x3DF3DB, 235}

TF[98]    767,   +128,    -64,     -0.
{0x1A0E3, 28}     {0x12CF3, 40}     {0x29FFB, 43}     {0xB9BAB, 96}
{0x8AE83, 105}

TF[99]    768,    -96,     -0.
{0x92B, 5}        {0xF193, 31}      {0x9703, 54}      {0x9B953, 76}
{0x31E2B, 87}     {0x648BB, 100}    {0x148A23, 101}   {0xD3B2B, 132}
{0x146E4B, 196}

TF[100]   768,   -352,    +32,     +0.
{0xCEFB, 30}      {0x36593B, 246}

TF[101]   768,   +256,    +64,     +0.
{0x9CD3, 24}      {0x1E8BB, 64}     {0x337CB, 100}    {0x102013, 128}
{0xFFF73, 138}    {0x518DEB, 228}

[go to site home page]